

Mark Scheme (Results) Summer 2010

GCE

Further Pure Mathematics FP1 (6667)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/ Aboutus/ contact-us/

Summer 2010

Publications Code UA023925

All the material in this publication is copyright
© Edexcel Ltd 2010

June 2010 Further Pure Mathematics FP1 6667 Mark Scheme

Question Number	Scheme	Mark	S
1.	(a) $(2-3i)(2-3i) =$ Expand and use $i^2 = -1$, getting completely correct	M1	
	expansion of 3 or 4 terms		
	Reaches $-5-12i$ after completely correct work (must see $4-9$) (*)	A1cso	(2)
	(b) $ z^2 = \sqrt{(-5)^2 + (-12)^2} = 13$ or $ z^2 = \sqrt{5^2 + 12^2} = 13$	M1 A1	(2)
	Alternative methods for part (b)	M1 A1	
	$ z^{2} = z ^{2} = 2^{2} + (-3)^{2} = 13$ Or: $ z^{2} = zz^{*} = 13$	WII AI	(2)
	(c) $\tan \alpha = \frac{12}{5}$ (allow $-\frac{12}{5}$) or $\sin \alpha = \frac{12}{13}$ or $\cos \alpha = \frac{5}{13}$	M1	
	$arg(z^2) = -(\pi - 1.176) = -1.97$ (or 4.32) allow awrt	A1	(2)
	Alternative method for part (c) $\alpha = 2 \times \arctan\left(-\frac{3}{2}\right)$ (allow $\frac{3}{2}$) or use $\frac{\pi}{2} + \arctan\frac{5}{12}$	M1	(2)
	so $arg(z^2) = -(\pi - 1.176) = -1.97$ (or 4.32) allow awrt	A1	
	Both in correct quadrants. Approximate relative scale No labels needed Allow two diagrams if some indication of scale Allow points or arrows	B1 7 ma	(1)
	Notes: (a) M1: for $4-9-12i$ or $4-9-6i-6i$ or $4-3^2-12i$ but must have correct statement seen and see i^2 replaced by -1 maybe later A1: Printed answer. Must see $4-9$ in working. Jump from $4-6i-6i+9i^2$ to -5-12i is M0A0 (b) Method may be implied by correct answer. NB $ z^2 =169$ is M0 A0 (c) Allow $\arctan \frac{12}{5}$ for M1 or $\pm \frac{\pi}{2} \pm \arctan \frac{5}{12}$		

Question Number	Scheme	Marks
2.	(a) $\mathbf{M} = \begin{pmatrix} 4 & 3 \\ 6 & 2 \end{pmatrix}$ Determinant: $(8-18) = -10$	B1
	$\mathbf{M}^{-1} = \frac{1}{-10} \begin{pmatrix} 2 & -3 \\ -6 & 4 \end{pmatrix} \qquad \begin{bmatrix} = \begin{pmatrix} -0.2 & 0.3 \\ 0.6 & -0.4 \end{pmatrix} \end{bmatrix}$	M1 A1 (3)
	(b) Setting $\Delta = 0$ and using $2a^2 \pm 18 = 0$ to obtain $a = .$	M1
	$a = \pm 3$	A1 cao
		5 marks
	Notes: (a) B1: must be -10 M1: for correct attempt at changing elements in major diagonal and changing signs in minor diagonal. Three or four of the numbers in the matrix should be correct – eg allow one slip A1: for any form of the correct answer, with correct determinant then isw. Special case: a not replaced is B0M1A0 (b) Two correct answers, $a = \pm 3$, with no working is M1A1 Just $a = 3$ is M1A0, and also one of these answers rejected is A0. Need 3 to be simplified (not $\sqrt{9}$).	

Question Number	Scheme	Marks
3.	(a) $f(1.4) =$ and $f(1.5) =$ Evaluate both	M1
	$f(1.4) = -0.256$ (or $-\frac{32}{125}$), $f(1.5) = 0.708$ (or $\frac{17}{24}$) Change of sign, : root	A1 (2)
	Alternative method:	
	Graphical method could earn M1 if 1.4 and 1.5 are both indicated	
	A1 then needs correct graph and conclusion, i.e. change of sign ∴root	
	(b) $f(1.45) = 0.221$ or $0.2 [:: root is in [1.4, 1.45]]$	M1
	f(1.425) = -0.018 or -0.019 or -0.02	M1
	∴root is in [1.425, 1.45]	A1cso (3)
	(c) $f'(x) = 3x^2 + 7x^{-2}$	M1 A1
	$f'(1.45) = 9.636$ (Special case: $f'(x) = 3x^2 + 7x^{-2} + 2$ then $f'(1.45) = 11.636$)	A1ft
	$x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	M1 A1cao (5) 10 marks

Notes

(a) M1: Some attempt at two evaluations

A1: needs accuracy to 1 figure truncated or rounded and conclusion including **sign change** indicated (One figure accuracy sufficient)

(b) M1: See f(1.45) attempted and positive

M1: See f(1.425) attempted and negative

A1: is cso – any slips in numerical work are penalised here even if correct region found.

Answer may be written as $1.425 \le \alpha \le 1.45$ or $1.425 < \alpha < 1.45$ or (1.425, 1.45) must be correct way round. Between is sufficient.

There is no credit for linear interpolation. This is $M0\ M0\ A0$

Answer with no working is also M0M0A0

(c) M1: for attempt at differentiation (decrease in power) A1 is cao

Second A1may be implied by correct answer (do not need to see it)

ft is limited to special case given.

 2^{nd} M1: for attempt at Newton Raphson with their values for f(1.45) and f'(1.45).

A1: is cao and needs to be correct to 3dp

Newton Raphson used more than once – isw.

Special case: $f'(x) = 3x^2 + 7x^{-2} + 2$ then f'(1.45) = 11.636...) is M1 A0 A1ft M1 A0 This mark can also be given by implication from final answer of 1.43

Question Number	Scheme	Marks
4.	(a) $a = -2$, $b = 50$	B1, B1 (2)
	(b) -3 is a root	B1
	Solving 3-term quadratic $x = \frac{2 \pm \sqrt{4 - 200}}{2}$ or $(x-1)^2 - 1 + 50 = 0$	M1
	=1+7i, 1-7i	A1, A1ft (4)
	(c) $(-3) + (1+7i) + (1-7i) = -1$	B1ft (1) 7 marks
	Notes (a) Accept $x^2 - 2x + 50$ as evidence of values of a and b . (b) B1: -3 must be seen in part (b) M1: for solving quadratic following usual conventions A1: for a correct root (simplified as here) and A1ft: for conjugate of first answer. Accept correct answers with no working here. If answers are written down as factors then isw. Must see roots for marks. (c) ft requires the sum of two non-real conjugate roots and a real root resulting in a real number. Answers including x are B0	

Question Number	Scheme	Marks
5.	(a) $y^2 = (10t)^2 = 100t^2$ and $20x = 20 \times 5t^2 = 100t^2$	B1
	Alternative method: Compare with $y^2 = 4ax$ and identify $a = 5$ to give answer.	B1 (1)
	(b) Point A is (80, 40) (stated or seen on diagram). May be given in part (a) Focus is $(5, 0)$ (stated or seen on diagram) or $(a, 0)$ with $a = 5$ May be given in part (a).	B1 B1
	Gradient: $\frac{40-0}{80-5} = \frac{40}{75} \left(= \frac{8}{15} \right)$	M1 A1 (4) 5 marks
	Notes:	
	(a) Allow substitution of x to obtain $y = \pm 10t$ (or just $10t$) or of y to obtain x	
	(b) M1: requires use of gradient formula correctly, for their values of x and y .	
	This mark may be implied by correct answer.	
	Differentiation is M0 A0	
	A1: Accept 0.533 or awrt	

Question	Scheme	Marks
Number		
6.	$ (a) \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} $	B1 (1)
	$ (b) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	B1 (1)
	(c) $\mathbf{T} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & -8 \end{pmatrix}$	M1 A1 (2)
	(d) $\mathbf{AB} = \begin{pmatrix} 6 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} k & 1 \\ c & -6 \end{pmatrix} = \begin{pmatrix} 6k+c & 0 \\ 4k+2c & -8 \end{pmatrix}$	M1 A1 A1 (3)
	(e) " $6k + c = 8$ " and " $4k + 2c = 0$ " Form equations and solve simultaneously	M1
	k=2 and $c=-4$	A1
		(2) 9 marks
	Alternative method for (e) M1: $AB = T \Rightarrow B = A^{-1}T = \text{ and compare elements to find } k \text{ and } c.$ Then A1 as before.	
	<u>Notes</u>	
	(c) M1: Accept multiplication of their matrices either way round (this can be implied by correct answer) A1: cao	
	(d) M1: Correct matrix multiplication method implied by one or two correct terms in correct positions. A1: for three correct terms in correct positions	
	 2nd A1: for all four terms correct and simplified (e) M1: follows their previous work but must give two equations from which k and c can be found and there must be attempt at solution getting to k = or c =. A1: is cao (but not cso - may follow error in position of 4k + 2c earlier). 	

Question Number	Scheme		Marks
7.	(a) LHS = $f(k+1) = 2^{k+1} + 6^{k+1}$	OR RHS =	M1
	, ,	$= 6f(k) - 4(2^k) = 6(2^k + 6^k) - 4(2^k)$	
	$=2(2^k)+6(6^k)$	$=2(2^k)+6(6^k)$	A1
	$=6(2^{k}+6^{k})-4(2^{k})=6f(k)-4(2^{k})$	$= 2^{k+1} + 6^{k+1} = f(k+1) $ (*)	A1
		, , , , , , , , , , , , , , , , , , , ,	(3)
	OR $f(k+1)-6f(k) = 2^{k+1}+6^{k+1}-6(2^k+6^k)$)	M1
			A1, A1
			(3)
	(b) $n = 1$: $f(1) = 2^1 + 6^1 = 8$, which is divis	ible by 8	B1
	Either Assume $f(k)$ divisible by 8 and try	Or Assume $f(k)$ divisible by 8 and try to	M1
	to use $f(k + 1) = 6f(k) - 4(2^k)$	use $f(k + 1) - f(k)$ or $f(k + 1) + f(k)$	
		including factorising $6^k = 2^k 3^k$	
	Show $4(2^k) = 4 \times 2(2^{k-1}) = 8(2^{k-1})$ or $8(\frac{1}{2}2^k)$	$=2^32^{k-3}(1+5.3^k)$ or	A1
	Or valid statement	$=2^32^{k-3}(3+7.3^k)$ o.e.	
	Deduction that result is implied for	Deduction that result is implied for	A1cso
	n = k + 1 and so is true for positive integers	n = k + 1 and so is true for positive integers	(4)
	by induction (may include $n = 1$ true here)	by induction (must include explanation of why $n = 2$ is also true here)	7 marks

Notes

(a) M1: for substitution into LHS (or RHS) or f(k+1)-6f(k)

A1: for correct split of the two separate powers cao

A1: for completion of proof with no error or ambiguity (needs (for example) to start with one side of equation and reach the other or show that each side separately is $2(2^k) + 6(6^k)$ and **conclude** LHS = RHS)

(b) B1: for substitution of n = 1 and **stating** "true for n = 1" or "divisible by 8" or tick. (This statement may appear in the concluding statement of the proof)

M1: Assume f(k) divisible by 8 and consider $f(k+1) = 6f(k) - 4(2^k)$ or equivalent expression that could lead to proof – not merely f(k+1) - f(k) unless deduce that 2 is a factor of 6 (see right hand scheme above).

A1: Indicates each term divisible by 8 **OR** takes out factor 8 or 2^3

A1: Induction statement . Statement n = 1 here could contribute to B1 mark earlier.

NB:
$$f(k+1) - f(k) = 2^{k+1} - 2^k + 6^{k+1} - 6^k = 2^k + 5.6^k$$
 only is M0 A0 A0

(b) "Otherwise" methods

Could use: $f(k+1) = 2f(k) + 4(6^k)$ or $f(k+2) = 36f(k) - 32(6^k)$ or $f(k+2) = 4f(k) + 32(2^k)$ in a similar way to given expression and Left hand mark scheme is applied.

Special Case: Otherwise Proof **not involving induction**: This can only be awarded the B1 for checking n = 1.

Question		Scheme		Marks
Number 8.	(a) $\frac{c}{3}$			B1 (1)
	(b) $y = \frac{c^2}{x} \Rightarrow \frac{dy}{dx} = -c^2 x^{-2}$,			B1
	$\mathbf{or} y + x \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y}{x}$	or $\dot{x} = c$, $\dot{y} = -\frac{c}{t^2}$ so $\frac{dy}{dx} = -\frac{c}{t^2}$	$-\frac{1}{t^2}$	
	and at $A \frac{dy}{dx} = -\frac{c^2}{(3c)^2} =$	$=$ $-\frac{1}{9}$ so gradient of normal is	s 9	M1 A1
	Either $y - \frac{c}{3} = 9(x - 3c)$	or $y=9x + k$ and use	$x=3c, y=\frac{c}{3}$	M1
	$\Rightarrow 3y = 27x - 80c$	(*)		A1 (5)
	(c) $\frac{c^2}{x} = \frac{27x - 80c}{3}$	$\frac{c^2}{y} = \frac{3y + 80c}{27}$	$3\frac{c}{t} = 27ct - 80c$	M1
	$3c^2 = 27x^2 - 80cx$	$27c^2 = 3y^2 + 80cy$	$3c = 27ct^2 - 80ct$	A1
		(y+27c)(3y-c) = 0 so $y =$		M1
	$x = -\frac{c}{27} , y = -27c$	$x = -\frac{c}{27} , y = -27c$	21	A1, A1 (5)
			$x = -\frac{c}{27} , y = -27c$	11 marks
Notes (b) B1: Any valid method of diff M1: Substitutes values and use A1: 9 cao (needs to follow cal M1: Finds equation of line throal: Correct work throughout – (c) M1: Obtains equation in one A1: Writes as correct three term M1: Attempts to solve three term A1: x coordinate, A1: y coordinate, A1		d uses negative reciprocal (new calculus) e through A with any gradient out – obtaining printed answ one variable $(x, y \text{ or } t)$ e term quadratic (any equivalent term quadratic to obtain $x = 0$	to correct expression for $\frac{dy}{dx}$ ends to follow calculus) (other than 0 and ∞) (other form) or $y = \text{or } t = 0$	

Question Number	Scheme	Marks
9.	(a) If $n = 1$, $\sum_{r=1}^{n} r^2 = 1$ and $\frac{1}{6} n(n+1)(2n+1) = \frac{1}{6} \times 1 \times 2 \times 3 = 1$, so true for $n = 1$. Assume result true for $n = k$	B1 M1
	$\sum_{r=1}^{k+1} r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	M1
	$= \frac{1}{6}(k+1)(2k^2+7k+6) \text{ or } = \frac{1}{6}(k+2)(2k^2+5k+3) \text{ or } = \frac{1}{6}(2k+3)(k^2+3k+2)$	A1
	$= \frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) \text{ or equivalent}$	dM1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all n .	A1cso (6)
	Alternative for (a) After first three marks B M M1 as earlier: May state RHS = $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) = \frac{1}{6}(k+1)(k+2)(2k+3)$ for third M1	B1M1M1 dM1
	Expands to $\frac{1}{6}(k+1)(2k^2+7k+6)$ and show equal to $\sum_{r=1}^{k+1} r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$ for A1 So true for $n = k+1$ if true for $n = k$, and true for $n = 1$, so true by induction for all n .	A1 A1cso (6)
	(b) $\sum_{r=1}^{n} (r^2 + 5r + 6) = \sum_{r=1}^{n} r^2 + 5 \sum_{r=1}^{n} r + (\sum_{r=1}^{n} 6)$	M1
	$\frac{1}{6}n(n+1)(2n+1) + \frac{5}{2}n(n+1), +6n$	A1, B1
	$= \frac{1}{6}n[(n+1)(2n+1)+15(n+1)+36]$	M1
	$= \frac{1}{6}n[2n^2 + 18n + 52] = \frac{1}{3}n(n^2 + 9n + 26)$ or $a = 9$, $b = 26$	A1 (5)
	(c) $\sum_{r=n+1}^{2n} (r+2)(r+3) = \frac{1}{3} 2n(4n^2 + 18n + 26) - \frac{1}{3} n(n^2 + 9n + 26)$	M1 A1ft
	$\frac{1}{3}n(8n^2 + 36n + 52 - n^2 - 9n - 26) = \frac{1}{3}n(7n^2 + 27n + 26)$ (*)	A1cso (3) 14 marks
	Notes: (a) B1: Checks $n = 1$ on both sides and states true for $n = 1$ here or in conclusion M1: Assumes true for $n = k$ (should use one of these two words) M1: Adds $(k+1)$ th term to sum of k terms A1: Correct work to support proof M1: Deduces $\frac{1}{6}n(n+1)(2n+1)$ with $n = k+1$ A1: Makes induction statement. Statement true for $n = 1$ here could contribute to B1 magnetic statement.	ark earlier

Question 9 Notes continued:

(b) M1: Expands and splits (but allow 6 rather than sigma 6 for this mark)

A1: first two terms correct

B1: for 6*n*

M1: Take out factor n/6 or n/3 correctly – no errors factorising

A1: for correct factorised cubic or for identifying a and b

(c) M1: Try to use $\sum_{1}^{2n} (r+2)(r+3) - \sum_{1}^{n} (r+2)(r+3)$ with previous result used **at least once**

A1ft Two correct expressions for their a and b values

A1: Completely correct work to printed answer

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@inneydirect.com</u> Order Code UA023925 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH